
IsäiöilM! ysaßtil

lli
sae »M

älffi!®

&B&

SSfiKÖ

SEKEa94 June, 21-2:

ü^BSü
vast mm

m MM
äs®»®

HU H

H
HH

H MKHI 111111$

_____HL Hi §§M^

it -

fp*"
i

*

Iir ftpi
Hl HOB

&sS®^i*l«vMa^-5
llPfe

ü

H

m

m
mm

msa

Printing

H Willi

■TTWKö

iiiHHPM nldHra&gfö

" EL? r 0 P v

REPORT DOCUMENTATION PAGE
KEEP THTS COPY FOR REPRODUCTION PURPOSES

form Approved

OM8 NO 0704-oraa

AGENC» Uik ONLY (tMvf w-nk) 2 REPORT DATE

12/12/94
«. TITLE ANO SUITITlf

A PIPELINE CASE TOOL FOR DATABASE DESIGN

3. REPORT TYPE ANO OATES COVERED
REPRINTS

6 AUTHOR(S) ' "

NAPHTALI RISHE and WEI SUN

7 PERFORMING ORGANIZATION-NAME(S) AND ADDRESS«

FLORIDA INTERNATIONAL UNIVERSITY
School of Computer Science
University Park, Miami, FL 33199

9 SPONSORING MONITORING AGENCY NAME(S) ANO

U.S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

5. FUNDING NUMBERS

3)fifirtöV-W-£~ö03.f

t PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Alto 3$L*<3 ?•/-/>>/hSJ)X
11 SUPPLEMENTARY NOTES "~ ~" ————___^_

The views, opinions and/or findings contained in this report are those of the

P . policy, or decision, unless so designated bv other documentation!:
12* DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION COOC

N/A

n »<Ta»rT /.. ir-Tfi u JjJ

auto^tes virtually all the busy work o deZ Wi hV IT'?*1 ***** deSi^ *»* too]-
the tool accepts instructions froTits user So il H IT ? ** intelli^ des^ decisions,
makes decisions itself based on >%£!0f-tLb" or ncinl H Tt^' "' ^ the USer default*'
semantics. The tool creates a turn-key datatse Snl S & f^ the knowle^ of the database-
illustrated design reports, manual, apP aS n g a" ^ S ^ tT^ With ^-ally-
an application-customized report venerator r^nf' data dictioi*ries, as well as
instructions are propagatedtto IZ products ^ " ** ^^ -^P"« °r desi^

'« SUBJECT TERMS" " ._

design tool, semantic database, relational database, schema, CASE

" ÄpAC
G1

SS,f,"T,0'r
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OP ABSTRACT
UNCLASSIFIED

15. NUMBER Of PAGES

8
1«. PUJCl COOC

MA.
20. LIMITATION Of ABSTRACT

UL

A Pipeline CASE tool for Database Design

Naphtali Rishe and Wei Sun

School of Computer Science, Florida International University, University Park, Miami, FL 33199

Abstract. We have developed a tool for design of rela-
tional databases, including Schemas, integrity constraints,
reports, and data entry forms, using semantic binary
Schemas. The tool is based on a top-down methodology.
In this methodology, a conceptual description of an
enterprise is designed using a semantic binary model.
Then, this description is converted into the relational
database design. The tool automates virtually all the
busy work of design. With respect to the intelligent
design decisions, the tool accepts instructions from its
user, who is a database designer, or, when the user
defaults, makes decisions itself based on "rule-of-thumb"
principles guided by the knowledge of the database's
semantics. The tool creates a turn-key database applica-
tion and its documentation with graphically-illustrated
design reports, manuals, application glossaries, and data
dictionaries, as well as an application-customized report
generator. Changes in the semantic description or
designer's instructions are propagated into the products.

1. INTRODUCTION
In the database design methodology automated by our
tool, semantic binary Schemas are converted into
relational Schemas and integrity constraints. The
semantic database models offer a simple, natural,
implementation-independent, flexible, and non-redundant
specification of information and its semantic aspects.
Since the original idea of [Abrial-74], many semantic
data models have been studied in the Computer Science
literature. Many semantic models have been surveyed in
[Hull&King-87] and [Peckham&Maryanski-88].
Although somewhat differing in their terminology and
their selection of tools used to describe the semantics of
the real world, the various semantic models are roughly
equivalent. This paper's methodology uses the Semantic
Binary Model (SBM) ([Rishe-92-DDS], [Rishe-89-SD])
a descendant of the model of [Abrial-74]. SBM does not
have as rich an arsenal of tools for semantic description
as can be found in some other semantic models.

This research has been supported in part by grants
from the U.S. Dol, Florida High Technology and
Industry Council, U.S. DoD/BMDO&ARO, Enter-
prise Florida, and NATO.

Nevertheless, the SBM has a small set of sufficient
simple tools by which all of the semantic descriptors of
the other models can be constructed. The use of
semantic models for the design of relational schemas has
been studied in [Brodie&a/.-84-CM], [Chen-76],
[King&McLeod-85], [Shoval-85], [Teorey&a/.-86],
[Leung&Nijssen-87], [Shoval/Even-Chaime-87],
[Verheijen&VanBekkum-82], [Rosenthal&Reiner-90],
[DeTroyer&Meersman-86], and other works. A
graphical interactive system for the design of semantic
databases is discussed in [ShovaI&a/.-88].

Our database design methodology (see also
[Rishe-92-DDS]) differs in satisfaction of a broad range
of schema-quality criteria, comparative analysis of
different design choices in various steps of design, and
systematic generation of integrity constraints. The
methodology employs procedures for generation of keys
of categories and for partitioning of non-disjoint
categories into disjoint ones. The treatment of sub-super
categories and non-disjoint categories is important for
the proper reflection of the original semantics in the
resultant relational schema and for avoidance of logical
redundancy of information in the database. In the input
semantic model of this methodology, SBM, the semantic
issues that are rather simple to the user are graphically
explicit. Other semantic nuances are relegated to
integrity constraints, and they are propagated into the
relational schema's external integrity constraints. After a
brief description of our database design methodology,
this paper introduce a CASE tool for automatic database
design.

2. DATABASE SCHEMAS: SEMANTIC
AND RELATIONAL

2.1. The Semantic Binary Model
This section describes the Semantic Binary Model. A
more detailed description can be found in [Rishe-92- ..
DDS]. The semantic binary database model represents
information of an application's world as a collection of
elementary facts of two types: unary facts categorizing
objects of the real world and binary facts establishing
relationships of various kinds between pairs of objects.
A definition of the model's concepts follows. d/or

Dist Special

D
D

Codes

336
\ß±

Object — any item in the real world. It can be
either a concrete object or an abstract object as follows.
Value, or Concrete Object — a printable object, such as a
number, a character string, or a date. Abstract Object —
a non-value object in the real world. An abstract object
can be, for example, a tangible item (such as a person, a
table, a country), or an event (such as an offering of a
course by an instructor), or an idea (such as a course).
Abstract objects cannot be represented directly in the
computer.

Category (also called Entity Type or Entity Set in
some semantic models) — any concept of the
application's real world which is used for classification
of objects. Two categories are disjoint if no object may
simultaneously be a member of both categories. A
category is a subcategory of another category if at every
point in time every object of the former category should
also belong to the latter. Binary Relationship — any
concept of the application's real world which is a binary
property of objects, that is, the meaning of a relationship
or connection between two objects. Notation: "xRy"
means that object x is related by the relationship R to
object y. Binary relationships are classified as many-to-
one (m:1, functional), one-to-many (l:m), many-to-many
(m:m), and one-to-one (1:1). The descriptor proper may
be used: e.g. proper m:l, means that the relation ism'A
and not 1:1.

A category C is the domain of R if it satisfies the
following two conditions: (a) whenever xRy then X
belongs to C (at every point in time for every pair of
objects); and (b) no proper subcategory of C satisfies
(a). A category C is the range of R if: (a) whenever
xRy then y belongs to C (at every point in time for
every pair of objects); and (b) no proper subcategory of
C satisfies (a). A relationship R whose domain is C is
total if at all times for every object x in C there exists an
object y such that xRy. (At different times different
objects y may be related to a given object x.)

A non-binary relationship is regarded in the
Binary Model as group of several simple relationships,
specifically:

"(1) An abstract category of events. Each event
symbolizes the existence of a relationship between
a group of objects.

(2) Functional binary relationships, whose domain is
the category (a). Each of those functional binary
relationships corresponds to a role played by some
objects in the non-binary relationship.

Thus, the fact that objects X,, . . . , X„ participate in an
n-ary relationship R in roles R\, . . ., Rnt is
represented by: an object e in the category R'', and
binary relationships eR \X j, . . . , eRnXn.

2.2. The Relational Model
For convenience of the database design and use of
languages, this section defines the Relational Model
technically as a subset of the Semantic Binary Model.

Attribute — a m:l or 1:1 relationship whose range
is a concrete category. Time-invariant attribute — An
attribute A is time-invariant if once an object x becomes
related by A to a value y, the object x will forever be
related by A to y, as long as x exists. (There are no time-
invariant attributes in the natural user world. Even if the
laws of physics or society do not allow for an attribute to
change in time, the attribute may change in the perceived
real world due to discoveries of errors in earlier
perception. For example, a social security number could
be wrongly reported and then corrected. Thus, time-
invariance is defined only in implementational
restrictions. Such restrictions are unavoidable in the
relational database design. The methodology of
relational schema design that is presented below has
among its goals the minimization of the negative effect
of such implementational restrictions.)

A time invariant attribute of a category is called its
[single-attribute] key if it is 1:1 and total. That means
that the values of the attribute can be used to identify the
objects of the category. (Due to the time-invariance
requirement, no attribute is really a key in the natural
user's world. Thus, the property of a key is defined only
in implementational restrictions, which are unavoidable
in the relational database design. Also, the requirement
of totality is very rarely an integrity constraint imposed
by the logic of the user world, but rather is an
implementational restriction.) Convention: In this
paper, we shall name the attributes constrained to be keys
with the suffix -key.

A [multi-attribute] key of a category C is a
minimal collection of total time-invariant attributes
f\Jl- ■ ■ ■ > fn of category C such that: for any
collection of values X\,..., Xn there is at most one
object y in C such that
x{ =y.fi andx2 = y-f2 and- • • and*n =y.fn

Convention: in this paper, when a category is
constrained to have exactly one key, and the key is
composed of several attributes, we shall name these
attributes with the suffix -in-key.

A binary schema is called a relational schema if

(i) all the abstract categories of the schema
have keys

(ii) all the abstract categories are pairwise
disjoint

(iii) the only relationships are attributes.

337

2.3. Schema Design Goals

A schema is said to be of high quality if it satisfies the
following criteria (described in greater detail in Chapter
1 of [Rishe-92-DDS] and Chapter 2 of [Batini&a/.-92]):
the schema is a natural description of the real world;
contains very little or no redundancy; does not impose
implementational restrictions; covers as many integrity
constraints as possible; the schema is flexible to design
changes; and other minor criteria of [Rishe-92-DDS].
The most important issue of the database design is the
design of a high-quality schema within the restrictions of
the available DBMS and database model. A low-quality
schema increases the chances of corruption of the data,
makes it very hard to use and maintain the database, and
makes it very hard, if not impossible, to adjust the
database to the changing concepts of the application's
real world. It is easy to design a high quality schema in
semantic models, particularly the Semantic Binary
Model. The task is much harder in the Relational Model.
Moreover, it is usually impossible to describe an
application world by a schema in the Relational Model
with the same high quality as witli which that application
can be described in the Semantic Binary Model.

A schema-conversion is a replacement of a schema
by another schema having the same information content.
This means that each of the two Schemas can be regarded
as a user-view of the other. Schema-conversion is a
means of database design: a schema is first designed in a
higher-level database model and then translated into a
lower-level model which is supported by the available
DBMS (when a DBMS for a higher-level model is
unavailable or inadequate).

3. SCHEMA CONVERSION: SBM TO
RELATIONAL

The central part of our tool is the automation of the
database design methodology of Chapter 3 of [Rishe-92-
DDS]. That involves algorithms imitating the human
designer: automatic restructuring of Schemas, generation
of names for new concepts; generation and propagation
of integrity constraints, as well as choosing defaults for
intelligent design decisions. This section describes the
steps of that methodology with comments regarding their
automation. The next section describes the other parts of
the tool. In this paper, the constraints are specified in a
form of first-order predicate calculus adapted to
databases. A full description of this language is given in
[Rishe&Sun-91-PC].

3.1. Composition and Split of
Relationships

Two auxiliary definitions of terminology that will be
used in the conversion algorithm follow.

Composition of relationships

Let the range of Relationship /?j be the domain of
Relationship /?2- Relationship R is the composition of
Äj and7?2if:

for every X ,y'. xRy iff there exists Z such that xR \Z
and zR^y.

The composition of relations by an automatic tool
involves creation of a new name, which can normally be
composed of the old names. The designer can override
such name generation by an instruction in the input.
Also, a comment describing the new relation is
automatically generated from the comments of the old
relations.

Relationship-split — conversion of a schema having a
relationship R into another schema having, instead of R,
a new abstract category C and two total functional
relationships R j, /?2> whose domain is C, s.t. xRy iff
there exists an object Z in C for which zR\X and
zRjy. In the process, the new category can be
automatically given a name and a comment derived from
the old relation and categories.

The following subsections present the conversion
algorithm.

3.2. Keys
Step 1. Choose a key for every abstract category,
excluding subcategories of other categories, as follows,
in the order of preference:

1) single-attribute key — if the category has an
attribute which is 1:1, time-invariant, and total;

2) "forced" single-attribute key — an attribute
which can be implementationally restricted to be 1:1,
time-invariant, and total;

3) multi-attribute key — a minimal collection of
attributes which are time-invariant and total, and jointly
identify all the objects in the category;

4) "forced" multi-attribute key — a minimal
collection of attributes which can be implementationally
restricted to be time-invariant and total, and to jointly
identify all the objects of the category;

5) inferred key — a collection of attributes
inferable from the information existing in the schema
and from keys of other categories, such that these
attributes can be implementationally restricted, to be
time-invariant and total, and to jointly identify all the

338

um <**>»*»—**» m(ämmmM*aii>im>**^

objects of the category;

6) enumerator id key — create a new external
randomized enumeration for the objects in the category.

When the database designer defaults, the latter id-
key is created by our tool. The values of this attribute
should bear no correlation to the other information in the
database, since the other information may change in
time, while the key is time-invariant. The data-entry
forms generated by our tool automatically assign
"meaningless" unique values to such attributes, thus
relieving die end-user from the burden of creating such
identifiers.

In the input of our system, the designer may
specify that a given category has a semantic key: a set of
relations and/or attributes that jointly identify the objects
of the category. Our tool will find inferred keys of the
categories by computing a transitive closure of such
specifications (not all categories will have inferred keys).
Assume that a category C is the domain of total
functional relationships/] /„ which jointly
identify all the objects of the category. The above
assumption means that there is an integrity constraint

VxeC.VyeC:

(*■/ i=y/1A • • • A x./„ =y./„) => x=y

In this case, once the keys of the ranges of the functional
relationships / j, ...,/„ are known, a key of C can be
inferred from them. Let the keys of the ranges be
jtj, , kn. Let fc,-of-/,- be the set of inferred
attributes obtained by the composition of the attributes
comprising the key ki and the relationship /,-. The key
of C is contained in the union of compositions of the
relationships /,- onto the keys of their ranges, that is,

{(*, of/,),•••, (£n of/„)}

Notice that the key of C is contained in the above union
of compositions. Usually the key of C is equal to that
union of compositions, but sometimes it is properly
contained.

3.3. Disjointness of Categories

Step 2. Convert Hie intersecting abstract categories
into disjoint categories by one of the following
procedures for every group of intersecting
categories.

a. Conversion into one category (Union)

b. Conversion into artificially disjoint categories of
Hats

c. Conversion into Union+Hals: we can retain the
union category with its original relations and in
addition have the hat categories to hold relations

specific to the former subcategories.

Criteria to choose one of the above options are described
in [Rishe-92-DDS].

3.4. Removal of Relationships

The steps of this section complete the process of schema
conversion.

Step 3. Convert every proper l:m or m:m relationship
whose range is a concrete category into a new
abstract category with its two functional
relationships through a relationship-split.

Step 4. Convert every l:m relationship into an m:I
relationship by changing its direction and its name.

Step 5. Convert every proper many-to-many
relationship into a category and two functional
relationships through a relationship-split.

Step 6. Choose a key for every category produced
through a relationship-split as follows.

For every category which was obtained through a
relationship-split, a key is contained in the union
of the compositions of its two functional
relationships on the keys of their ranges.

Step 7. Replace every m:l relationship / whose
range is an abstract category by the composition
of / on the chosen key of its range, that is, by
attributes b \, . . . , bn, where X.b^ = (x.f).ait

and a j, . . ., an is the chosen key of/ 's range.

Step 8. Remove redundant non-key attributes.

Step 9. Translate the integrity constraints into the
terms of the new schema.

4. STRUCTURE OF THE TOOL

This tool is based on pipeline database design principles:
the semantic description of an enterprise is processed by
a series of filters, changes in the semantic description are
automatically propagated. The input consists of the
listing of a linear description of the semantic schema,
including the definitions of the meanings of all the
categories, relationships, and attributes, integrity
constraints at the semantic level, designer's choices for
the conversion decisions, and overwrites to be modified
in the resulting relational schema. The input consists of
sections, each forming a logical subschema. The
subschemas are interconnected by common categories.
The output of the tool consists of:

1. Logical design report. This report is independent
of the DBMS to be used for the project.

a. Graphical semantic subschemas and
definitions of all of their concepts.

339

* b. Summary of the semantic schema.

c. The relational schema and its integrity
constraints.

d. Glossary, defining the meaning of all the
application's attributes and tables.

e. Miscellaneous analysis.

/. A comprehensive index.

2. An ORACLE database, including:

a. SQL definitions for all the tables, attributes,
comments to the attributes (derived from the
comments to the meaning in the semantic
schema), keys, referential integrity
specifications, specifications of checks to be
performed on attribute values.

b. Generation of screen data entry and update
forms, including triggers to enforce
integrity. For every table there are two
forms: (i) a base form covering all the
attributes of the table; (ii) as above, but also
containing sub-windows for all the
dependent tables connected to this table by
l:m relationships, i.e. the tables having
referential integrity pointers to this table.

3. A system of smart data reports. On invocation the
user is menu-prompted for the database table, an
optional additional logically related table, optional
data selection criteria, optional sort criteria
(default: by the keys), etc. The tool evaluates the
outer join of the two tables according to the
logically related fields. (The outer join produces
rows of the first table even if there are no matches
in the second table. The system knows what fields
to join on because it knows the semantics of the
database.) Multi-row headers are added based on
the names of the fields. Wide output is
automatically compressed to fit into the minimal
width by finding the widest actual datum in each
column (or, when the datum or heading consists of
several words which can be split into several lines,
the widest word). If after compression the output
still cannot fit in the width of one page, the output
is split horizontally between separate pages, while
repeating the values of the sort fields. For
example, if the report consists of fields / j, / 2<
f ■$, '' • /50, where / j and f 1 are the key
fields, the output may appear in pages la, lb, lc,
2a, 2b, 2c, etc., where page la contains the fields
/1 to / 7, page 1 b contai ns fields / j,/ 2. and / g
to /40, and page lc contains fields f [, f 2> ana"

/41 to/50-

This tool has been used for database design for the
Everglades National Park.

Example.
A sample logical declaration of an attribute line in
the input of the Everglades schema is:

attr location-tolerance
HYDROLOGY-STATION 0..1000
m:l (Tolerance of the location of a
station, in feet. A value X assigned to
this attribute means that the tolerance
is +/-X feet.)

Most of the above is a comment defining the
meaning of the attribute. (This comment is
automatically propagated to data-entry windows,
reports, glossaries, etc.)

The input declarations are maintained in flat files using a
text editor. Graphic depictions are automatically
generated. Some other approaches prefer graphical input
interface. In this tool, we prefer a textual input interface
while leaving the pictures for automatic generation by
the tool. This allows greater flexibility and saves time.
About 80% of the input is the text of the comments that
are logical definitions of categories and relations. It is
easier to maintain such comment texts using a text editor
than using a graphic tool. Also, input hardware
independence is achieved: any terminal and a modem
will do.

Apart of the design pipeline, the input files are
subjected to other tools like spellers, searchers, and
publishing systems.

The input contains information based on
interviews with the Client, translated into formal
concepts. The specification of every concept consists of:
the concept's name, which should be clear and
meaningful to the database users; technical
characteristics of the concept; and comment defining the
meaning of the concept.

The purposes of the comment are:

• to verify that the systems analysts correctly
understand the meanings of the application's
concepts;

• to concisely convey the meanings of the
application to the programming personnel who
will work on the application in the future;

• to provide online comments on all database entities
to the future users of the database on the Client's
side: during the automatic schema design process
the comments are propagated into data entry forms
(as pop-up helps), data reports, etc. As new
compound concepts are generated during the
automatic design process, their comments are

340

compounded, derived and transformed (by simple
syntactic manipulations).

• to provide an information reference manual for use
by the Client's personnel and for training of new
employees, whether they will be using the
database or not;

• to facilitate decision making at the Client's
managerial and executive levels by providing a
graphic overview and a comprehensive directory
of the information owned by the Client (as a
supplement to the other decision support
resources: a directory of the personnel employed, a
directory of financial and tangible assets owned,
and the database itself.)

Technical characteristics involve constraints on concepts.
Also, a range of the possible values of an attribute can be
given. For example, 23.5.. 100.7 means that the attribute
is numeric, that its values may not be less than 23.5 or
greater than 100.7, and that the precision is one digit
after the decimal point.

This tool has been implemented at the Florida
International University on a SUN-4 computer running a
UNIX-compatible operating system. The programs were
written mostly in the C language. The database design
descriptions are automatically produced in a publication
ready form using the DITROFF text processing package.
On-screen graphic output is generated in POSTSCRIPT
(particularly, the automatically drawn diagrams of
semantic Schemas). The current DBMS interface is to
the ORACLE system. The following students
participated in the tools' implementation and helped in
this research: Michael Alexopoulos, Carlos Ibarra, Alok
Jain, Ravichandra Kallem, Ranjana Kizakkevariath, Tim
Riley, Tatiana Shoshkina, and Eugeni Zabokritski.

5. EXAMPLE

This example describes a database that has been
developed for the Hydrology Division of the Everglades
National Park. (Actually this application is a self-
contained sub-application of a larger database covering
various activities of the Park and consisting of more than
1000 categories, relations, and attributes, all of which is
managed by our tool.) The following are fragments of
the design report generated by the tool.

5.1. Semantic Analysis

5.1.1. Hydrology stations

HYDROLOGY
STATION

station-id: Char(15) key
station-description: String

station-location-north: 2746840..2865840
station-location-east: 446880..563280

location-tolerance: 0..1000

FIXED STATION

housing-descriptor: String
platform-height: 0.00..10.00

location-north: 2746840..2865840
location-east: 446880..563280
platform-height: 0.00.. 10.00

 J

DISCONTINUOUS
STATION

the discontii uous station
(m:l, total)

STATION
CONTINUITY

PERIOD

begin-date: Date key/2
end-date: Date

Figure 5-1. Stations.

HYDROLOGY-STATION — category. (A catalog of
hydrology stations which reside within the Park.)

341

t FIXED-STATION — subcategory of HYDROLOGY-
t • STATION. (A hydrology station which is housed

in a permanent structure.)

DISCONTINUOUS-STATION — subcategory of
FIXED-STATION. (A fixed hydrology station
which collects data only for specific intervals of
time.)

STATION-CONTINUITY-PERIOD — category. (A
catalog of periods during which a discontinuous
station is active and various data is collected.)

the-discontinuous-station — relation from
STATION-CONTINUITY-PERIOD to
DISCONTINUOUS-STATION (m:l,total). (The
discontinuous station which was active for periods
of time collecting data.)

Station-id — attribute of HYDROLOGY-STATION,
range: Char(I5) {key).

Station-description — attribute of HYDROLOGY-
STATION, range: String (m:I). (English name or
designation of the station.)

station-location-north — attribute of
HYDROLOGY-STATION, range:
2746840..2865840 (m.I). (UTM north coordi-
nate of a hydrology station.)

station-location-east — attribute of
HYDROLOGY-STATION, range: 446880..563280

(m:l). (UTM east coordinate of a hydrology sta-
tion.)

location-tolerance — attribute of HYDROLOGY-
STATION, range: O..I000 (m:l). (Tolerance of
the location of a station, in feet. A value X
assigned to this attribute means that the tolerance
is +/-X feet.)

housing-descriptor — attribute of FIXED-
STATION, range: String (m:l). (Description of
the housing of a fixed station.)

platform-height — attribute of FIXED-STATION,
range: 0.00..10.00 (m.I). (The height of the sta-
tion platform from the water surface, in feet.)

location-north — attribute of FIXED-STATION,
range: 2746840..2865840 (m:l). (UTM north
coordinate of the benchmark which corresponds to
a fixed station.)

location-east — attribute of FIXED-STATION, range:
446880..563280 (m:l). (UTM east coordinate of
the benchmark which corresponds to a fixed sta-
tion.)

platform-height — attribute of FIXED-STATION,
range: 0.00..I0.00 (HI./). (The difference
between the height of the station platform and the

height of its corresponding benchmark, in feet.)

begin-date — attribute of STATION-CONTINUITY-
PERIOD, range: Date (key/2). (The date during
which a discontinuous station was activated and
started the generation of data for some parame-
ters.)

end-date — attribute of STATION-CONTINUITY-
PERIOD, range: Date (m.I). (The date during
which a period of activation for some discontinu-
ous station ended.)

5.1.2. Relational schema of the application

HYDROLOGY-STATION

station-id-key:Char(\5) 1:1; station-description:Stiing;
location-tolerance^.. 1000;
station-location-east:446&80..563280;
station-location-north:2146840..2S65S40;
is-discontinuous-station:Boolean;
is-fixed-station:Boo\ean; location-east:446$80..563280;
location-north:2746B40..2S65S40;
housing-descriptor.String; platform-height:0.00.A0.Q0;
platform-heif-hf.O.OQ.. 10.00;

STATION-CONTINUITY-PERIOD

of--station-id-in-key:C\\at(15); begin-date-in-key:Dale;
end-date.Dalc;

The following are some of the integrity constraints
automatically generated during schema conversion.

(for every x in HYDROLOGY-STATION: if x.is-
discontinuous-station then x.is-fixed-station) and

(for every x In HYDROLOGY-STATION: if not x
location-east null then x.is-fixed-station) and

(for every x in HYDROLOGY-STATION: if not x
location-north null then x.is-fixed-station) and

(for every x in HYDROLOGY-STATION: if not x
housing-descriptor null then x.is-fixed-station)
and

(for every x in HYDROLOGY-STATION: If not x
platform-height null then x.is-fixed-station) and

(for every x in HYDROLOG Y-STATION: if not x
platform-height null then x.is-fixed-station) and

(for every x in HOURLY-STAGE: exists y in
HYDROLOGY-STATION: x.hourly-produced-
by-station-id-in-key = y. station-id-key) and

342

(for every x in STATION-CONTINUITY-PERIOD:
exists y in HYDROLOGY-STA TION: x.of-
station-id-in-key = y.station-id-key and y.is-
discontinuous-station)

References

[Abrial-74] J.R. Abrial, "Data Semantics," in J.W.
Klimbie and K.L. Koffeman (eds.), Data Base
Management. North Holland, 1974.

[Batini&a/.-92] Batini, C, Ceri, S., Navathe, S.B.,
Conceptual Database Design: an Entity
Relationship Approach, Benjamin Cummings,
1992.

lBrodie&fl/.-84-CM] M.L. Brodie, J. Mylopoulos,
and J.W. Schmidt (eds.). On Conceptual
Modelling. Springer-Verlag, New York,
1984.

IChen-76] P. Chen. "The Entity-Relationship
Model: Toward a Unified View of Data."
ACM Trans. Database Syst. 1, 1, pp. 9-36.

[DeTroyer&Meersman-86] O. de Troyer and R.
Meersman. "Transforming Conceptual
Schema Semantics to Relational Database
Applications." Fourth Scandinavian
Research Seminar on Information Modeling
and Data Base Management, 1986.

[HulI&King-87] R. Hull and R. King. "Semantic
Database Modeling: Survey, Applications,
and Research Issues." ACM Computing
Surveys, 19, 3, pp. 201-260.

[King&McLeod-85] R. King and D. McLeod. "A
Database Design Methodology and Tool for
Information Systems." ACM Transactions on
Office Information Systems, 3, 1, pp. 2-21.

[Leung&Nijssen-87] C.M.R. Leung and G.M.
Nijssen. "From a NIAM Conceptual Schema
into the Optimal SQL Relational Database
Schema." Aust. Comput. J., vol. 19, no. 2.

[Peckham&Maryanski-88] J. Peckham and F.
Maryanski."Semantic Data Models." ACM
Computing Surveys, 20, 3, pp. 153-189.

[Rishe-89-SD] N. Rishe. "Semantic Database
Management: From Microcomputers to
Massively Parallel Database Machines."

Keynote Paper, Proceedings of the Sixth
Symposium on Microcomputer and
Microprocessor Applications, Budapest,
October 17-19, 1989, pp 1-12.

[Rishe-92-DDS] N. Rishe. Database Design: Tlie
Semantic Modeling Approach. McGraw-Hill,
1992,528 pp.

[Rishe&Sun-91-PC] N. Rishe and W. Sun. "A
Predicate Calculus Language for Queries and
Transactions in Semantic Databases." In:
Databases: Theory, Design and Applications.
IEEE Computer Society Press, 1991 (N.
Rishe, S. Navathe, and D. Tal, eds.) pp. 204-
221.

[Rosenthal&Reiner-90] A. Rosenthal and D.
Reiner. "Database Design Tools: Combining
Theory, Guesswork, and User Interaction."
In: Entity-Relationship Approach to Database
Design and Querying, ed. F.H. Lochovsky.
Elsevier Science Publishers (North-Holland),
1990, pp. 187-201.

[Shoval-85] P. Shoval. "Essential Information
Structure Diagrams and Database Schema
Design." Information Systems, vol. 10, no. 4,
1985.

[Shoval&a/.-88] P. Shoval, E. Gudes, and M.
Goldstein. "GISD: A Graphical Interactive
System for Conceptual Database Design."
Information Systems, vol. 13, no.l, 1988.

[Shova!/Even-Chaime-87] P. Shoval and M. Even-
Chaime. "ADDS: A Systems for Automatic
Database Schema Design Based on the
Binary-Relationship Model." Data and
Knowledge Engineering 2, 1987.

[Teorey&a/.-86] T.J. Teorey, D. Yang, and J.P. Fry.
"A Logical Design Methodology for
Relational Databases using the Extended
Entity-Relationship Model." ACM
Computing Surveys, 18, 2, pp. 197-222.

[Verheijen&VanBekkum-82] G.M.A. Verheijen
and J. Van Bekkum. "NIAM - An
Information Analysis Method," In:
Information Systems Design Methodologies:
A Comparative Review, T.W. Olle et al., eds.,
IFIP, North-Holland, 1982.

343

